Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(1): 014415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38545127

RESUMO

The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.

2.
Biomed Opt Express ; 15(2): 743-752, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404309

RESUMO

The advent of super-resolution microscopy has opened up new avenues to unveil brain structures with unprecedented spatial resolution in the living state. Yet, its application to live animals remains a genuine challenge. Getting optical access to the brain in vivo requires the use of a 'cranial window', whose mounting greatly influences image quality. Indeed, the coverslip used for the cranial window should lie as orthogonal as possible to the optical axis of the objective, or else significant optical aberrations occur. In this work, we assess the effect of the tilt angle of the coverslip on STED and two-photon microscopy, in particular, image brightness and spatial resolution. We then propose an approach to measure and reduce the tilt using a simple device added to the microscope, which can ensure orthogonality with a precision of 0.07°.

3.
Nat Commun ; 14(1): 6411, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828018

RESUMO

Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation (electron microscopy), do not have cellular resolution (magnetic resonance imaging) or only give a fragmented view (fluorescence microscopy). Here, we show how regular light microscopy together with fluorescence labeling of the interstitial fluid in the extracellular space provide comprehensive optical access in real-time to the anatomical complexity and dynamics of living brain tissue at submicron scale. Using several common fluorescence microscopy modalities (confocal, light-sheet and 2-photon microscopy) in mouse organotypic and acute brain slices and the intact mouse brain in vivo, we demonstrate the value of this straightforward 'shadow imaging' approach by revealing neurons, microglia, tumor cells and blood capillaries together with their complete anatomical tissue contexts. In addition, we provide quantifications of perivascular spaces and the volume fraction of the extracellular space of brain tissue in vivo.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Espaço Extracelular , Cabeça
4.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37709524

RESUMO

Chemical fixation using paraformaldehyde (PFA) is a standard step for preserving cells and tissues for subsequent microscopic analyses such as immunofluorescence or electron microscopy (EM). However, chemical fixation may introduce physical alterations in the spatial arrangement of cellular proteins, organelles, and membranes. With the increasing use of super-resolution microscopy to visualize cellular structures with nanometric precision, assessing potential artifacts, and knowing how to avoid them, takes on special urgency. We addressed this issue by taking advantage of live-cell super-resolution microscopy that makes it possible to directly observe the acute effects of PFA on organotypic hippocampal brain slices, allowing us to compare tissue integrity in a "before-and-after" experiment. We applied super-resolution shadow imaging (SUSHI) to assess the structure of the extracellular space (ECS) and regular super-resolution microscopy of fluorescently labeled neurons and astrocytes to quantify key neuroanatomical parameters. While the ECS volume fraction (VF) and microanatomic organization of astrocytes remained largely unaffected by the PFA treatment, we detected subtle changes in dendritic spine morphology and observed substantial damage to cell membranes. Our experiments show that PFA application via immersion does not cause a noticeable shrinkage of the ECS in hippocampal brain slices maintained in culture, unlike the situation in transcardially perfused animals in vivo where the ECS typically becomes nearly depleted. Our study outlines an experimental strategy to evaluate the quality and pitfalls of various fixation protocols for the molecular and morphologic preservation of cells and tissues.


Assuntos
Artefatos , Microscopia , Animais , Camundongos , Astrócitos , Encéfalo , Hipocampo
5.
Neurophotonics ; 10(4): 044402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37215638

RESUMO

Significance: Stimulated emission depletion (STED) microscopy has been used to address a wide range of neurobiological questions in optically well-accessible samples, such as cell culture or brain slices. However, the application of STED to deeply embedded structures in the brain of living animals remains technically challenging. Aim: In previous work, we established chronic STED imaging in the hippocampus in vivo but the gain in spatial resolution was restricted to the lateral plane. In our study, we report on extending the gain in STED resolution into the optical axis to visualize dendritic spines in the hippocampus in vivo. Approach: Our approach is based on a spatial light modulator to shape the focal STED light intensity in all three dimensions and a conically shaped window that is compatible with an objective that has a long working distance and a high numerical aperture. We corrected distortions of the laser wavefront to optimize the shape of the bottle beam of the STED laser. Results: We show how the new window design improves the STED point spread function and the spatial resolution using nanobeads. We then demonstrate the beneficial effects for 3D-STED microscopy of dendritic spines, visualized with an unprecedented level of detail in the hippocampus of a living mouse. Conclusions: We present a methodology to improve the axial resolution for STED microscopy in the deeply embedded hippocampus in vivo, facilitating longitudinal studies of neuroanatomical plasticity at the nanoscale in a wide range of (patho-)physiological contexts.

6.
Biophys Rev ; 15(1): 43-70, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36909955

RESUMO

Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and microtubule imaging and how these methods can aid in understanding microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a perspective on the future of these methods and how technological advancements can help make SHG microscopy a more widely adopted imaging technique.

7.
Neurophotonics ; 8(3): 035001, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34136589

RESUMO

Significance: Stimulated emission depletion (STED) microscopy enables nanoscale imaging of live samples, but it requires a specific spatial beam shaping that is highly sensitive to optical aberrations, limiting its depth penetration. Therefore, there is a need for methods to reduce optical aberrations and improve the spatial resolution of STED microscopy inside thick biological tissue. Aim: The aim of our work was to develop and validate a method based on adaptive optics to achieve an a priori correction of spherical aberrations as a function of imaging depth. Approach: We first measured the aberrations in a phantom sample of gold and fluorescent nanoparticles suspended in an agarose gel with a refractive index closely matching living brain tissue. We then used a spatial light modulator to apply corrective phase shifts and validate this calibration approach by imaging neurons in living brain slices. Results: After quantifying the spatial resolution in depth in phantom samples, we demonstrated that the corrections can substantially increase image quality in living brain slices. Specifically, we could measure structures as small as 80 nm at a depth of 90 µ m inside the biological tissue and obtain a 60% signal increase after correction. Conclusion: We propose a simple and robust approach to calibrate and compensate the distortions of the STED beam profile introduced by spherical aberrations with increasing imaging depth and demonstrated that this method offers significant improvements in microscopy performance for nanoscale cellular imaging in live tissue.

8.
Glia ; 69(6): 1605-1613, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710691

RESUMO

The extracellular space (ECS) plays a central role in brain physiology, shaping the time course and spread of neurochemicals, ions, and nutrients that ensure proper brain homeostasis and neuronal communication. Astrocytes are the most abundant type of glia cell in the brain, whose processes densely infiltrate the brain's parenchyma. As astrocytes are highly sensitive to changes in osmotic pressure, they are capable of exerting a potent physiological influence on the ECS. However, little is known about the spatial distribution and temporal dynamics of the ECS that surrounds astrocytes, owing mostly to a lack of appropriate techniques to visualize the ECS in live brain tissue. Mitigating this technical limitation, we applied the recent SUper-resolution SHadow Imaging technique (SUSHI) to astrocyte-labeled organotypic hippocampal brain slices, which allowed us to concurrently image the complex morphology of astrocytes and the ECS with unprecedented spatial resolution in a live experimental setting. Focusing on ring-like astrocytic microstructures in the spongiform domain, we found them to enclose sizable pools of interstitial fluid and cellular structures like dendritic spines. Upon experimental osmotic challenge, these microstructures remodeled and swelled up at the expense of the pools, effectively increasing the physical interface between astrocytic and cellular structures. Our study reveals novel facets of the dynamic microanatomical relationships between astrocytes, neuropil, and the ECS in living brain tissue, which could be of functional relevance for neuron-glia communication in a variety of (patho)physiological settings, for example, LTP induction, epileptic seizures or acute ischemic stroke, where osmotic disturbances are known to occur.


Assuntos
Astrócitos , Encéfalo/diagnóstico por imagem , Isquemia Encefálica , Espaço Extracelular , Humanos , Acidente Vascular Cerebral
10.
Methods Mol Biol ; 1944: 145-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840241

RESUMO

An important issue in tissue biomechanics is to decipher the relationship between the mechanical behavior at macroscopic scale and the organization of the collagen fiber network at microscopic scale. Here, we present a protocol to combine traction assays with multiphoton microscopy in ex vivo murine skin. This multiscale approach provides simultaneously the stress/stretch response of a skin biopsy and the collagen reorganization in the dermis by use of second harmonic generation (SHG) signals and appropriate image processing.


Assuntos
Colágeno/análise , Mecanotransdução Celular , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Tração/métodos , Animais , Bioensaio , Fenômenos Biomecânicos , Colágeno/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Pele/ultraestrutura
11.
Sci Data ; 5: 180229, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30351303

RESUMO

Tensile testing to failure followed by imaging is a simple way of studying the structure-function relationship of connective tissues such as skin, tendon, and ligament. However, interpretation of these datasets is complex due to the hierarchical structures of the tissues spanning six or more orders of magnitude in length scale. Here we present a dataset obtained through the same scheme at the single collagen fibril level, the fundamental tensile element of load-bearing tissues. Tensile testing was performed on fibrils extracted from two types of bovine tendons, adsorbed on a glass surface and glued at both ends. An atomic force microscope (AFM) was used to pull fibrils to failure in bowstring geometry. The broken fibrils were then imaged by AFM for morphological characterization, by second harmonic generation microscopy to assess changes to molecular packing, and by fluorescence microscopy after incubation with a peptide probe that binds specifically to denatured collagen molecules. This dataset linking stress-strain curves to post-failure molecular changes is useful for researchers modelling or designing functional protein materials.


Assuntos
Colágeno/ultraestrutura , Microscopia de Força Atômica/métodos , Tendões/química , Resistência à Tração , Animais , Fenômenos Biomecânicos , Bovinos , Colágeno/química , Microscopia de Fluorescência/métodos , Microscopia de Geração do Segundo Harmônico/métodos
12.
Opt Lett ; 43(20): 5082-5085, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320824

RESUMO

Nonlinear optical imaging in the epi-direction is used to image subresolution features. We find that a refractive index mismatch between the object to be imaged and the background medium can change the far-field intensity image. As an example, we study second harmonic generation (SHG) microscopy where the forward-to-backward (F/B) ratio is used to quantify subresolution features. We show both theoretically and experimentally that the inhomogeneous refractive index in collagen tendon tissue creates near-field effects, which can change the F/B ratio by ∼20%-25%, even though the effect is negligible for most of the individual fibrils in the tissue. This is caused by the sensitivity of the backward signal on phase matching conditions.

13.
Elife ; 72018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932052

RESUMO

Rewiring neural circuits by the formation and elimination of synapses is thought to be a key cellular mechanism of learning and memory in the mammalian brain. Dendritic spines are the postsynaptic structural component of excitatory synapses, and their experience-dependent plasticity has been extensively studied in mouse superficial cortex using two-photon microscopy in vivo. By contrast, very little is known about spine plasticity in the hippocampus, which is the archetypical memory center of the brain, mostly because it is difficult to visualize dendritic spines in this deeply embedded structure with sufficient spatial resolution. We developed chronic 2P-STED microscopy in mouse hippocampus, using a 'hippocampal window' based on resection of cortical tissue and a long working distance objective for optical access. We observed a two-fold higher spine density than previous studies and measured a spine turnover of ~40% within 4 days, which depended on spine size. We thus provide direct evidence for a high level of structural rewiring of synaptic circuits and new insights into the structure-dynamics relationship of hippocampal spines. Having established chronic super-resolution microscopy in the hippocampus in vivo, our study enables longitudinal and correlative analyses of nanoscale neuroanatomical structures with genetic, molecular and behavioral experiments.


Assuntos
Espinhas Dendríticas/ultraestrutura , Hipocampo/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Molecular/métodos , Rede Nervosa/ultraestrutura , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Córtex Cerebral/cirurgia , Espinhas Dendríticas/fisiologia , Feminino , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Imagem Molecular/instrumentação , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia
14.
Opt Lett ; 43(9): 1958-1961, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714771

RESUMO

We report on a simple way to directly measure the Gouy phase shift of a strongly focused laser beam. This is accomplished by using a recent technique, namely, interferometric second-harmonic generation. We expect that this method will be of interest in a wide range of research fields, from high-harmonic and attosecond pulse generation to femtochemistry and nonlinear microscopy.

15.
Sci Rep ; 8(1): 4409, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535366

RESUMO

The collagen-based tissues of animals are hierarchical structures: even tendon, the simplest collagenous tissue, has seven to eight levels of hierarchy. Tailoring tissue structure to match physiological function can occur at many different levels. We wanted to know if the control of tissue architecture to achieve function extends down to the nanoscale level of the individual, cable-like collagen fibrils. Using tendons from young adult bovine forelimbs, we performed stress-strain experiments on single collagen fibrils extracted from tendons with positional function, and tendons with energy storing function. Collagen fibrils from the two tendon types, which have known differences in intermolecular crosslinking, showed numerous differences in their responses to elongation. Unlike those from positional tendons, fibrils from energy storing tendons showed high strain stiffening and resistance to disruption in both molecular packing and conformation, helping to explain how these high stress tissues withstand millions of loading cycles with little reparative remodeling. Functional differences in load-bearing tissues are accompanied by important differences in nanoscale collagen fibril structure.


Assuntos
Nanoestruturas , Tendões/fisiologia , Tendões/ultraestrutura , Animais , Anisotropia , Biomarcadores , Fenômenos Biomecânicos , Bovinos , Colágeno/química , Colágeno/metabolismo , Imagem Molecular , Ruptura/patologia , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Tendões/metabolismo , Tendões/patologia
16.
Sci Rep ; 7(1): 13750, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061975

RESUMO

Skin aging is a complex process that strongly affects the mechanical behavior of skin. This study aims at deciphering the relationship between age-related changes in dermis mechanical behavior and the underlying changes in dermis microstructure. To that end, we use multiphoton microscopy to monitor the reorganization of dermal collagen during mechanical traction assays in ex vivo skin from young and old mice. The simultaneous variations of a full set of mechanical and microstructural parameters are analyzed in the framework of a multiscale mechanical interpretation. They show consistent results for wild-type mice as well as for genetically-modified mice with modified collagen V synthesis. We mainly observe an increase of the tangent modulus and a lengthening of the heel region in old murine skin from all strains, which is attributed to two different origins that may act together: (i) increased cross-linking of collagen fibers and (ii) loss of water due to proteoglycans deterioration, which impedes inner sliding within these fibers. In contrast, the microstructure reorganization upon stretching shows no age-related difference, which can be attributed to opposite effects of the decrease of collagen content and of the increase of collagen cross-linking in old mice.


Assuntos
Envelhecimento , Colágeno/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Envelhecimento da Pele , Pele/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Camundongos , Camundongos Transgênicos , Pele/anatomia & histologia , Estresse Mecânico
17.
Acta Biomater ; 50: 302-311, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043893

RESUMO

Skin is a complex, multi-layered organ, with important functions in the protection of the body. The dermis provides structural support to the epidermal barrier, and thus has attracted a large number of mechanical studies. As the dermis is made of a mixture of stiff fibres embedded in a soft non-fibrillar matrix, it is classically considered that its mechanical response is based on an initial alignment of the fibres, followed by the stretching of the aligned fibres. Using a recently developed set-up combining multiphoton microscopy with mechanical assay, we imaged the fibres network evolution during dermis stretching. These observations, combined with a wide set of mechanical tests, allowed us to challenge the classical microstructural interpretation of the mechanical properties of the dermis: we observed a continuous alignment of the collagen fibres along the stretching. All our results can be explained if each fibre contributes by a given stress to the global response. This plastic response is likely due to inner sliding inside each fibre. The non-linear mechanical response is due to structural effects of the fibres network in interaction with the surrounding non-linear matrix. This multiscale interpretation explains our results on genetically-modified mice with a simple alteration of the dermis microstructure. STATEMENT OF SIGNIFICANCE: Soft tissues, as skin, tendon or aorta, are made of extra-cellular matrix, with very few cells embedded inside. The matrix is a mixture of water and biomolecules, which include the collagen fibre network. The role of the collagen is fundamental since the network is supposed to control the tissue mechanical properties and remodeling: the cells attach to the collagen fibres and feel the network deformations. This paper challenges the classical link between fibres organization and mechanical properties. To do so, it uses multiscale observations combined to a large set of mechanical loading. It thus appears that the behaviour at low stretches is mostly controlled by the network structural response, while, at large stretches, the fibre inner-sliding dominate.


Assuntos
Fenômenos Fisiológicos da Pele , Pele/anatomia & histologia , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Estresse Mecânico
18.
J Orthop Res ; 34(10): 1743-1752, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27734566

RESUMO

Osteochondrosis is an ischemic chondronecrosis of epiphyseal growth cartilage that results in focal failure of endochondral ossification and osteochondritis dissecans at specific sites in the epiphyses of humans and animals, including horses. The upstream events leading to the focal ischemia remain unknown. The epiphyseal growth cartilage matrix is composed of proteoglycan and collagen macromolecules and encases its vascular tree in canals. The matrix undergoes major dynamic changes in early life that could weaken it biomechanically and predispose it to focal trauma and vascular failure. Subregions in neonatal foal femoral epiphyses (n = 10 osteochondrosis predisposed; n = 6 control) were assessed for proteoglycan and collagen structure/content employing 3T quantitative MRI (3T qMRI: T1ρ and T2 maps). Site-matched validations were made with histology, immunohistochemistry, and second-harmonic microscopy. Growth cartilage T1ρ and T2 relaxation times were significantly increased (p < 0.002) within the proximal third of the trochlea, a site predisposed to osteochondrosis, when compared with other regions. However, this was observed in both control and osteochondrosis predisposed specimens. Microscopic evaluation of this region revealed an expansive area with low proteoglycan content and a hypertrophic-like appearance on second-harmonic microscopy. We speculate that this matrix structure and composition, though physiological, may weaken the epiphyseal growth cartilage biomechanically in focal regions and could enhance the risk of vascular failure with trauma leading to osteochondrosis. However, additional investigations are now required to confirm this. 3T qMRI will be useful for future non-invasive longitudinal studies to track the osteochondrosis disease trajectory in animals and humans. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1743-1752, 2016.


Assuntos
Lâmina de Crescimento/patologia , Osteocondrose/etiologia , Animais , Colágeno Tipo II/metabolismo , Feminino , Fêmur , Lâmina de Crescimento/metabolismo , Cavalos , Imageamento por Ressonância Magnética , Masculino , Osteocondrose/metabolismo , Osteocondrose/patologia , Proteoglicanas/metabolismo
19.
Opt Express ; 24(15): 17497-504, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464195

RESUMO

We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V.

20.
Biomed Opt Express ; 7(2): 399-408, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26977349

RESUMO

We report the implementation of fast Interferometric Second Harmonic Generation (I-SHG) microscopy to study the polarity of non-centrosymmetric structures in biological tissues. Using a sample quartz plate, we calibrate the spatially varying phase shift introduced by the laser scanning system. Compensating this phase shift allows us to retrieve the correct phase distribution in periodically poled lithium niobate, used as a model sample. Finally, we used fast interferometric second harmonic generation microscopy to acquire phase images in tendon. Our results show that the method exposed here, using a laser scanning system, allows to recover the polarity of collagen fibrils, similarly to standard I-SHG (using a sample scanning system), but with an imaging time about 40 times shorter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...